KEEP YOUR WORK AND ANSWERS COVERED. | 1. | ` | 24 pts) Indicate whether each statement is true (T) or false (F). Be certain T r F is clearly indicated. | |----------|------------|---| | | - | One Torr and one mmHg are equal. | | F | • | As n of a gas increases (at constant V and T), then P decreases. | | | | If a gas mixture contains one mol He and one mol Ar, then each gas has the same pressure. | | F | • | At the same T and P , humid air is denser than dry air. | | 1 | •••
•—— | Melting a sample of wax is endothermic. | | <u>F</u> | - | It takes more heat to raise the temperature of one gram of dichloromethane ($\rm CH_2Cl_2$) than it takes for one gram of ethanol ($\rm C_2H_5OH$). | | 1 | | Reversing a process changes the sign for a ΔH . | | 1 | | ${ m CO}_2(g)$ has a negative $\Delta H_{ m f}^{ m o}.$ | | | | | 2 (6 pts) The following equation is balanced. ** ** $$\mathrm{CH_2Cl_2}(l) + \mathrm{O_2}(g) \to \mathrm{CO_2}(g) + 2 \,\mathrm{HCl}(g)$$ $\Delta H^\circ = -456.68 \,\mathrm{kJ}$ For the reaction which uses 25.0 g $\mathrm{CH_2Cl_2}$, circle the ΔH° (in kJ). | -115 | (-134) | -157 | -187 | -231 | -258 | |------|--------|------|------|------|------| | -272 | -296 | -307 | -322 | -361 | -389 | 3. (5 pts) The density of an unknown gas was measured to be 1.021 g/L at 88 °C and 336 Torr. Of the gases below, circle the one that best fits the measurement. NF_3 $C_2H_4F_2$ Cl_2 C_5H_{10} H_2SiF_2 SO_2 4. (5 pts) A 9.4 g sample of ethyl alcohol, C_2H_5OH , originally at 18 °C, was heated to 33 °C. Circle the number of calories which were transferred in the process. The specific heat capacity for C_2H_5OH in this temperature range is 2.4 J/(g • K). | 32 | 36 | 43 | 4 8 | 54 | 59 | |----|----|----|------------|-----|----| | 62 | 66 | 73 | 76 | 81) | 88 | ** 5. (5 pts) A 15.4 L container holds a gas at 38 °C and 2.19 atm. The gas is transferred to a new container with a volume of 19.7 L and the new temperature is 87 °C. Circle the new pressure (in atm) of the gas. | 1.31 | 1.46 | 1.57 | (1.98) | 2.18 | 2.31 | |------|------|------|--------|------|------| | 2.66 | 2.87 | 3.02 | 3.25 | 3.48 | 3.71 | 6. (6 pts) Consider a 23.0 L mixture of $SO_2(g)$ and $CO_2(g)$ with a total pressure of 683 Torr at 57 °C. The mol% of SO_2 is 46.5%. Circle the total mass (in g) of the mixture. | | | 22.7 | | | 35.5 | |------|------|------|------|------|------| | 40.7 | 46.3 | 51.0 | 53.5 | 63.4 | 66.3 | 7. (6 pts) Balance the following equation. All reactants and products are shown. $$\text{FeO}_4^{2-} + 3\text{V}^{3+} + 2\text{H}^+ \rightarrow \text{Fe}^{3+} + 3\text{VO}^{2+} + \text{H}_2\text{O}$$ 8. (6 pts) The following equation is balanced. CH₃NH₂($$aq$$) + 2 N₂O(g) \rightarrow HCN(aq) + 2 N₂(g) + 2 H₂O(l) Circle the ΔH° (in kJ) for this reaction. -322.2 -388.3 -432.4 -468.1 (-558.5) -580.1 $$-322.2$$ -388.3 -432.4 -468.1 $\left(-558.5\right)$ -580.1 -622.0 -663.8 -732.7 -778.0 -812.1 -863.6 9. (6 pts) Write the formation equation for $CH_3N_3(l)$. ** ** 10. (6 pts) 240. mL of a solution of 0.163 M AgClO₄ are added to a solution containing excess Li₃PO₄. After all steps were completed, the actual yield of precipitate was 2.8 g. Circle the percent yield for this process. | | | | | - | | |------|-----|-----|-----|----------|-----| | 51% | 53% | 58% | 62% | 65% | 69% | | 70.% | 75% | 79% | 81% | 84% | 87% |