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Chapter 47 FREE ENERGY AND EQUILIBRIUM
©2012, 2023 Mark E. Noble

We have seen examples dealing with standard conditions and examples dealing with nonstandard
conditions, and how the initial conditions can impact the value of AG. Furthermore, these changes can
also change the sign of AG and therefore the direction the reaction can take. But there is another
consideration with important ramifications: while a reaction is actually occurring, the amounts of reactants
and products are steadily changing and therefore Q itself is changing. Thus, during the reaction itself, AG
is changing; in fact, it is heading towards zero. The direction of allowed, net change is ALWAYS towards
balance, towards equilibrium. At equilibrium, AG = 0 and there is no further net change. This has very
important consequences.

47.1 Equilibrium aspects
Let's consider the special case of equilibrium conditions. Recall Case 3 from Section 45.3.

% o CASE 3 AS,., IS ZERO which means AG, IS ZERO.
S,y stays the same.
G,,s stays the same.

This is a very special Case. It's a very important Case. The reaction as written cannot happen
by itself and the reverse reaction cannot happen by itself. Although neither can happen
by themselves, BOTH can happen together as long asthey happen to the same extent.
Both directions are in balance. Sound familiar? THIS IS EQUILIBRIUM. AG,, = 0 is the
equilibrium condition. *

We can now connect the equilibrium condition to our general Q equation by setting AG = 0.

at equilibrium: AG = 0 = AG®° + RTInQ
Re-arrange.
at equilibrium: AG°® = -RTInQ

This relationship has important consequences. For a given reaction at a given temperature, AG® is a
constant. Since AG®, R and T are constants in this equation, then the reaction quotient itself is a constant
at equilibrium. This has special significance, and a new term is introduced: the equilibrium quotient or
equilibrium constant, symbolized by K. The equilibrium constant is the reaction quotient at equilibrium
conditions.

AG°® = -RTInK

For a given reaction at a given temperature, this provides a direct relationship between the change in
standard free energy of the process and the equilibrium quotient. We can also re-arrange this equation
and solve for K by the exponential (antiln) function.

K = e AG/RT

Thus, with either equation, we can find AG° from K and vice versa. You need to be able to work with
either equation and be able to convert in either direction.

You must understand the distinction between Q and K. K is simply one specific condition of Q. For
any reaction, Q can be any value and it will depend on the conditions (activities) which apply. K, however,
is specific to the equilibrium condition; it is a fixed value for a specific T and that value also connects to
AG?® by the relationship above. Q will equal K at the equilibrium condition of balance, but Q can be lots
of other values when not at equilibrium. As noted in the last Chapter, Q can also equal one if all reactants
and products are at standard conditions. Let's summarize the variations for Q.

For any condition: Q = reaction quotient for the given conditions
For standard condition: Q=1
For equilibrium condition: Q =K

In general, the numerical value of Q can vary widely. However, for the specific case of standard
conditions, the value is 1 (exact); for the specific case of equilibrium balance, the value is equal to K.

The equilibrium constant, K, has major significance and we shall see many cases of that in many
Chapters to come. For now, we will apply it to various equilibria which we have considered so far. As
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noted, you can use K to find AG® or you can use AG° to find K. Let's consider five reactions/processes
from the last Chapter and then we'll throw in a new twist for Example 6.

Example 1. 2 NO(g) + 2Cl(g) = 2Cl,0(g) + Ny(g)

Let's say you measured the contents of the system at equilibrium (at 298.15 K) and found that K =
0.000213. What is AG® for the reaction?

You need
AG® = -RTInK
for which
AG°® = -(8.314 ]/K)(298.15K) In(0.000213) = 21,000] = 21.0 kJ

and there's your AG°. We worked with the value AG°® = 20.96 kJ in Example 3 from last Chapter. The
two values are the same to the correct sigfigs.

This calculation now provides a third method for the determination of a AG®, in addition to the prior
methods from AH® - T AS° and from AG$. This new method is important because it is often convenient
to measure the amounts of components in a system at equilibrium, which then provides a measure of K
and then of AG®°.

Now keep in mind that K, like Q, is products-over-reactants and it has no units. K expressions are
the same as Q expressions.

P(CI,0)? P(N,)

P(NO)? P(Cl,)?

At equilibrium, this ratio of products over reactants has the numerical value of K = 0.000213.
Next.

Example 2. CH;CO,H(aq) = H*(ag) + CH,;CO,(aq)

Let's say this solution was set up with a bit of strong acid added in order to vary the amount of H*. Now
let's say that you measured the following concentrations at equilibrium.

[CH;CO,H] = 0.165 M [H*] = 0.00224 M [CH,CO,”] = 0.00130 M
Find AG® for the weak acid dissociation at 298.15 K.

You can do this one. You need to set up the K expression, plug in the equilibrium quantities and
solve for the numerical value of K.

K expression measured conditions
K = [ 1L 1 _ ( )( ) _
1 (—— ) v
Use K to calculate the AG°. v of
AG® = -RTInK = —( ) ) In(above number K) = kJ

Plug in, punch out, round off. You will need to decimal shift three places to end up in kJ. You can check
your final answer by referring to Example 5 in Chapter 46, although you get one less decimal place here.
(Be sure to compare to AG° and not just AG in the Chapter 46 Example.)

Now we'll turn things around and use AG° to solve for K. In doing so, we'll show some more
connections and consequences.

We return to the vaporization of water.
H,0()) = H,0(9)
In the last Chapter, we talked about this quite a bit. For example,
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% Using AHY,, and ASY,, from the illustration upstairs, you would find AG?,, = 8.56 kJ. That's
endergonic. Evaporation of water cannot happen by itself under the given conditions. But
water does evaporate at 25 °C. We know that from common experience. How can water

evaporate at 25 °C if evaporation is endergonic at these conditions? *

and

% We consider a container system which has an overhead gas space containing one mol H,0(g)
with P = one atm and one mol of pure H,0(I) in the bottom of the container.
H,O(l) = H,0(g) AGY,, = 8.56 k]
one atm
At these conditions, the sign of AGY,, is positive and the forward process is endergonic; more
vaporization cannot happen by itself. However, the reverse process, condensation, is allowed.
Net change can happen in the reverse direction: this decreases P of H,0(g) until the system hits
equilibrium. At equilibrium, there will be less than one mol of H,0(g) and the pressure of

H,0(g) will be less than one atm. In fact, that pressure is water's EVP at 25 °C and that value
is 0.0313 atm. Also at equilibrium, there will be more than one mol of H,O(l). *

Let's now derive this EVP from thermodynamic values.

We have our equation and the AGY,, in the above quotes. We need
K = e—AG°/RT
and you're ready to go. Here's just the exponent term so far.
-AG° -(8.56 kJ)
RT (8.314 J/K)(298.15 K)

OK, you need to be careful with units again. The kelvins drop out just fine, but there's a kJ in the
numerator and a J in the denominator. One of those needs to decimal shift and it doesn't matter which.
I'll shift the numerator.

-AG® -8,560 ]
RT (8.314 3/K)(298.15 K)

Now plug all that in and punch it out: you get -3.4532..., but we're not done yet. You still have to take
the antiln of that to get to your final K.

K = e—3.4532... = 0.0316

OK, so you now have the value of K. What does that tell you? Well, what does K itself mean for this
example? What is the K expression?

K = P(H,0(9))

This K is the activity of H,O(g) at equilibrium; this activity represents the pressure in atm at equilibrium,
so this result gives the value for EVP (in atm). Thus, using a AGY,, for any substance, we can calculate
an EVP for that substance. You can even calculate an EVP at other temperatures via AG?,, = AHS,, -

T ASY,,. Notice that our calculated value here (0.0316 atm) differs a tad from the value quoted above
from Chapter 46 (0.0313 atm), but that's good enough within the given sigfigs.

Next.

Example 4. C,H,OH(l) = C,H,OH(aq)

In Chapter 46 Example 2, we had AGY,,, = -0.17 kJ for dissolving 1-butanol in water. Now, find K and the
solubility of 1-butanol in water at 25.00 °C.

You need
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Focus first on the exponent part.
-AG° _ -(-0.17 kJ)
RT (8.314 1/K)(298.15 K)

Decimal shift the numerator. While you're at it, watch the signs: you have two negatives in the numerator
on the right which we'll just leave out.

-AG° 1701
RT (8.314 1/K)(298.15 K)
Punch all of that out and you get 0.068581...; do the antiln to get to the final K.
K = @0.068%81... — 414

There's your value for K but what does that tell us? Consider the K expression.
K = [C,H;0H(aq)]

This gives the activity of 1-butanol in water at equilibrium, which corresponds to the concentration in M.
This result is the solubility of 1-butanol in water. The calculated value of K says that the equilibrium
(saturation) concentration for 1-butanol in water is 1.1 M.

Your turn.

Example 5. Find the solubility (in M) of pentane, C;H,,, in water.
CsHio(D) = CsHyx(aq)

In Section 39.4, we had AHY,, = -1.9 kJ. In Section 44.2, we listed AS,, = -68.2 J/K. Find AGY,, from
these at 25.00 °C and use that to find the solubility at 25.00 °C.

Do the AGg,, part.
Then K = e ™26 /RT,

Now what is the K expression?

The numerical value for K is the concentration (in M) of CsH,, dissolved in water at equilibrium. The
number is certainly small enough for pentane to be classified as insoluble. If you want to check your
answers, they're in Section 51.2.

With the water EVP example and the two solubility examples, we are seeing a valuable application
for K. I should point out, however, that we are still assuming ideal behavior and I should remind you that
solutions are more prone to nonideal behavior than are gases at common conditions. The Examples above
are very good for matching ideal and real behavior but high concentrations will not be. Furthermore, for
ionic solutes, only very small concentrations will give a good agreement between real and ideal.

OK, let's add one more twist to this process. We'll revisit carbonation from Section 41.2. Instead
of a flavored beverage, we'll just work with CO, and water.

Example 6. Calculate the solubility (in M) of CO, in water at 25.00 °C when the equilibrium pressure
of CO,(g) above the solution is 4.0 atm.

Where to start? Like always, start with an equation.
CO,(g) = COy(aq)
What does that get you? Well, what does K look like?
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[CO,(aq)]
P(CO,(9))

In this problem, you are given the pressure of the overhead CO,(g) at equilibrium, and you are looking
for the concentration of CO,(aq) (in M). Let's re-arrange.

[COy(aq)] = K x P(COx(9))

Hmmm. Wait a minute. Does that look vaguely familiar? Section 41.2: it's the gas solubility equation.
At that time, we considered the solubility of some gas compound A in water and the equation was written
as follows.

[A(@g@)] = ky x P,

The gas solubility equation was developed from experimental observations many, many years ago and
now we have the same equation derived from thermodynamic principles. This also provides a
thermodynamic connection for the values of k,,. A primary difference between K and k, is that K uses
activities which are unitless while k, traditionally carries units directly. There can also be differences
between the numerical values of K and k, when conditions are not so ideal or when other processes are
operating but, for simple solubility, the values of K and k, will be equal or very close.

Continuing now, you were given P(CO,(g)). You need the value for K and that will come from AGg,,
which is hereby provided as AGg,, = 8.41 kJ. Calculate K.

K = @AG/RT —

Then plug that in to get the solubility of CO,(aq).
[COx(aq)] = K x P(COx(g)) = K x 4.0

Since that is simply a re-arranged K expression, the pressure activity is entered as unitless. Now, solve
for [CO,(aq)].

This will give the number for the solubility of CO, at these conditions and that will be a molarity. That
molarity is your fizz factor for a freshly-opened bottle of carbonated water.

With these six Examples, we see the vital connection between K and AG°. These Examples provide
a small introduction to the many important consequences from this relationship. We will develop much
more of K beginning in Chapter 51 and continuing through Chapter 60. The impact is huge, but that is
the nature of equilibrium anyway. Equilibrium is an essential aspect which carries impact on all processes,
small and large. It's an important part of you, it's an important part of your world. Equilibrium is balance.
Equilibrium is also the net stopping point, and that was part of the drive to bring you here.

47.2 Drive

We are closing on four Chapters which have addressed the question of whether a reaction or process
can or cannot happen. If it can happen, then the next question becomes to what extent: can the reaction
go to completion, L—R, or does it go to some point of equilibrium in between, ending with a mixture of
all reagents from both sides of the equation? These are vastly important questions. Ultimately, the
outcome is dictated by the various contributions to the change in total entropy, AS,,,, which we have
tidily packaged into the system parameter of AG.

Remember that there are two important parts of AG. The first is the sign of AG and this part
determines the allowed direction: a negative AG says the reaction is allowed in the forward direction,
L—R, while a positive AG says the reaction is allowed in the reverse direction, L—R. The second
important part is the magnitude of the AG. This is the energy which would be available from the
exergonic process or this is the minimum payment into the system which would be required for an
endergonic process. Traditionally, for an exergonic process, this has also been called the "driving force".
The driving force represents Nature's drive toward maximum S,,,. When there are more and more
options to be gained, then AS,,, is larger and larger and AG is more and more negative. A more negative
AG has a greater driving force to happen; a less negative AG has a smaller driving force to happen.

Let's put some of this to picture.
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Consider a simple equilibrium involving gases A and Z, in a 1:1 rxn ratio.

A(g) = Z(9)

We can start with 1.00 atm of A and no Z, or we can start

with no A and 1.00 atm of Z, or we can start anywhere in-
between. The free energies involved at different compositions Ga-
in the system are depicted at right. (Note that the vertical

axes represent values of G, and not of AG. A change in free
energy, AG, will be the difference between two G's on the
curve.) The condition of 1.00 atm of A and no Z is depicted

at the far left on the horizontal axis, and the free energy of

this system is designated G,. Conversely, the condition of no Geq-f~—-=======T"=---—1 -Geq
A and 1.00 atm of Z is depicted at the far right, and the free 1
energy of this system is designated G,. Any point on the | B B S B
curve between the two vertical axes represents the free 1.00 -atmA - 0.00
energy for a system containing a mixture of A and Z. Nature 0.00 -atm 22 - 1.00
drives to maximum S, which corresponds to the minimum

G of the system. The minimum G is the equilibrium point, designated G.,. For this illustration,
equilibrium occurs when the system contains 0.36 atm of A and 0.64 atm of Z, which gives K = 1.8.
Regardless of where we start, the final, net stopping point for the system is the point of equilibrium.

If we start with 1.00 atm of A and no Z and let that go to equilibrium, the change in free energy from
G, to G, (hereby designated AG,) is

AG, = Gapa = Gt = Geq — Ga

and this will be negative, because G, < G,. At the other extreme, if we start with no A and 1.00 atm of
Z and let that go to equilibrium, then the change in free energy (hereby designated AG,) is

AG; = Gppg = Gt = Geq — G2
and this will also be negative, because G, < G,. Either way, the allowed direction has a negative AG.

Now let's say you start the reaction with 1.00 atm of A
and no Z, and let it run a bit until you have a mixture of 0.90
atm of A and 0.10 atm of Z. This point is added at left, with
G, indicating the free energy for this new set of conditions.
Going from that point on to equilibrium, the change in free
energy, AG,, is given by

AGI = Gﬂnal - Ginitial = Geq - G1

and this will again be negative (because G, < G;). Note that
AG, is less negative than the original AG,; as the reaction
proceeds L—R, AG takes on smaller negative values,
corresponding to a decrease in the driving force. Note also
1.00 - atm A - 0.00 that the given amounts correspond to Q = 0.10/0.90 = 0.11,
0.00 -atm Z - 1.00 and Q is less than K; as the reaction proceeds towards
equilibrium, Q will increase.

We can do this in the other direction also. Let's say you
start the reaction with no A and 1.00 atm of Z, and let it run
a bit until you have a mixture of 0.10 atm of A and 0.90 atm
of Z. This is now illustrated at right, with G, representing the
free energy for this new set of conditions. From that point on
to equilibrium, the change in free energy, AG,, is given by

AGZ = Gfinal - Glnitial = Geq - GZ

and this will again be negative (because G, < G,). AG, is less
negative than the starting AG;; as the reaction proceeds L<R,
AG takes on smaller negative values and the driving force is
again decreasing. Note also that the given amounts result in
Q = 0.90/0.10 = 9.0, and Q is greater than K; as the reaction
proceeds towards equilibrium, Q will decrease.
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Regardless of whether the system begins at a point to the left or to the right of equilibrium, the
allowed direction of net change is always toward equilibrium. Upon reaching equilibrium, there is no
further net change, and AG = zero.

Here's another way of looking at the exergonic directions in the plots above: beginning from any
point on the free energy curve to the left or to the right of equilibrium, the allowed direction is downhill
because that leads to the minimum G for the system. At the point of equilibrium, the curve is horizontal
with a zero slope; there is no downhill direction and there is no further net change. Conversely, if the
system is starting at equilibrium or on either side of equilibrium, and you want to move it further away
from equilibrium, then that's an uphill climb; that's endergonic, and you must pay into the process.

But not every process or reaction involves a significant
G- equilibrium. In many cases, reactants react to completion,

A leaving only products in the system at the end of the
reaction. These reactions will have a sizeably negative AG°®,
corresponding to a very large value of K. Consider some such
reaction which is exergonic in the L—R direction, as depicted
at left.

A(g) - Z(9)

The minimum in the energy diagram essentially occurs all the
way to the right. While you may be able to calculate an
equilibrium amount remaining for A, it is negligible, and
essentially only Z remains. This reaction would go to
completion. Common combustion reactions are examples of
this type. (If you want, you can take a sneak peak at Case D
in Chapter 51 for an example.)

For any of the allowed processes described here, the

-Gz driving force decreases as the reaction occurs. For any

exergonic reaction, the greatest driving force (the most

L L negative AG) occurs at the moment of starting the reaction.

1.00 -atmaA - 0.00 As the reaction proceeds, the driving force gets weaker (less
0.00 -atm Z - 1.00 negative AG) and eventually goes to zero.

Let's now look at an equilibrium system from a somewhat different perspective. Consider the
progress of an equilibrium system in terms of the general AG equation.

AG = AG° + RTInQ
Let's consider Q in terms of rights-over-lefts.

AG = AG® + RTIn%

For present illustration purposes, we specify that AG° is negative. We additionally specify that at least
one solute or gas is present on both sides of the balanced equation and that the starting amounts of
solutes and/or gases result in Q < 1 initially. For Q < 1, InQ will be negative. Under these conditions,
the AG will be negative and the reaction is exergonic in the forward direction, L—R. Once the reaction
starts and as the reaction proceeds in this L— R direction, then we can note the following.

The amounts of products increase on the right and this increases the numerator of Q.
The amounts of reactants decrease on the left and this decreases the denominator of Q.
As a result, the value of Q = R/L increases.

The term, RT In(R/L), increases (becomes less negative).

This makes AG less negative.

This means the driving force weakens.

This is reflected in the diagram at right which now introduces a time
component. Initially, AG is some negative number at time zero; this (v}
becomes less negative as time goes on. Ultimately, the system
reaches AG = 0, and there is then no net driving force. Even though
there can be some amount of each reagent on the left and on the AG
right, there is no net change in their amounts. The reaction is "done".

time of rxn —
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As we go along through the many Chapters addressing the question of what can happen, we are also
developing the fuller picture of equilibrium. Recall what was said in Chapter 35.

% There are two approaches to describe the balance which is associated with any equilibrium.

1. The first approach is by the speeds (rates) of the opposing processes. At the point of
equilibrium, these speeds are equal and in balance. This approach is the kinetic

description of equilibrium.

2. The second approach is by enthalpy and entropy. At the point of equilibrium, a system's
enthalpy and its entropy are in balance. This approach is the thermodynamic description

of equilibrium.

As I said, these two items are really big for all equilibria in general. Write "THE BIG TWO" in

the margin next to them. *

Now, here in Chapter 47, we have completed the second of The Big Two with respect to can happen.
There will be more of equilibrium down the road but, for now, we turn to the other side of the story
regarding whether something will happen. Keep in mind that, even though a process is allowed, it does
not mean that it will really happen. An exergonic reaction in a beaker with a small driving force may go

to equilibrium or it may never happen.

A possible explosion with a huge driving force may go to

completion or it may never happen. Whether an exergonic process will actually happen or will not happen
is an entirely separate issue, and that will connect into the first of The Big Two. That is where we go next.

It's time to get the ball rolling.

Problems

1.

True or false.
a. For every reaction, the direction of allowed net change is toward AG = 0.
b. For any process at equilibrium, K = 1.

c. The greatest driving force for any exergonic process is at the very start of the process.

d. As Q increases, the driving force increases.

Which one of the following is an equilibrium condition for every reaction?
a. Q > K b. Q = K c. Q <K d. Q = one

Consider the following balanced equation.
CO,(g9) + 6HI(g) = H,0(9) + CH;0H(g9) + 3Iys)
Find the value for K at 298.15 K.

Consider the following balanced equation.

Ba®*(ag) + CO,(g) + H,0(l) = BaCO,(s) + 2 H*(aq)
Find the value for K at 298.15 K.
Consider the sublimation of I,(s).

a. What is the EVP (in atm) of I,(g) at 25.00 °C?
b. What is the EVP (in atm) of I,(g) at 65.00 °C?

Consider the solubility of H,S(g) in water. At 298.15 K, what is the equilibrium concentration (in M)

of H,S(aq), if the overhead pressure of H,S(g) is 0.136 atm?
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